Understanding the science and technology of whole genome sequencing

Dag Undlien

Department of Medical Genetics

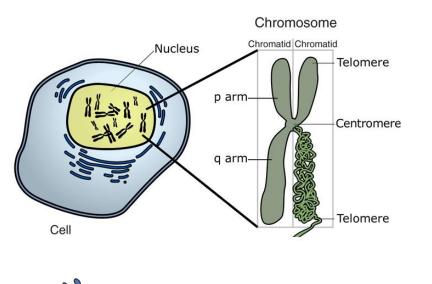
Oslo University Hospital

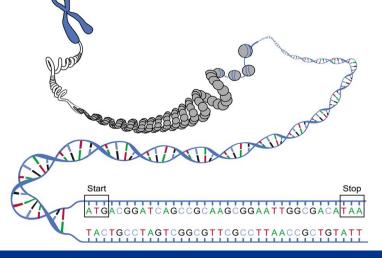
University of Oslo

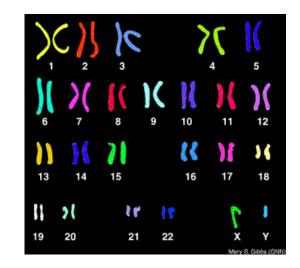
and

The Norwegian Sequencing Centre

d.e.undlien@medisin.uio.no

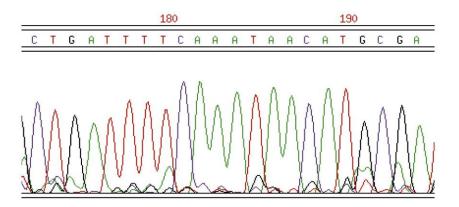



DNA sequencing technology



DNA

Oslo universitetssykehus

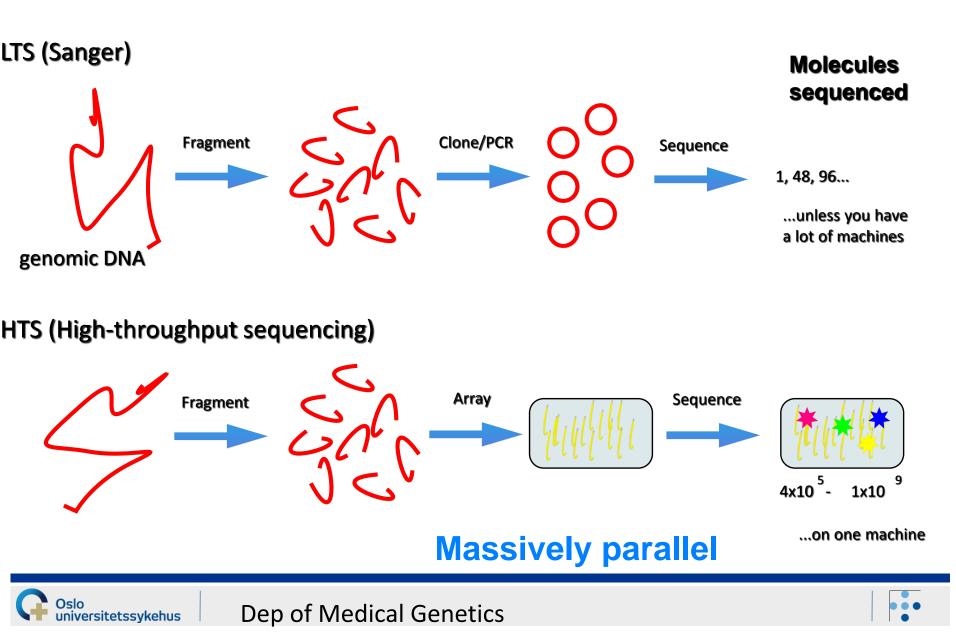

- а 4 bases A, G, C, T GATC CTAG
- u Human genome ~3 billion bases
- How can we read the sequence of bases?

DNA sequencing

Mimic the way DNA replication occurs in living cells in a test tube.

Monitor the chemical reactions that take place

- J Sanger sequencing
- Detect nucleotide extension with radioactivity or fluorescence
- Accurate but slow


High-throughput sequencing

also known as next generation sequencing, deep sequencing, massively parallel sequencing......

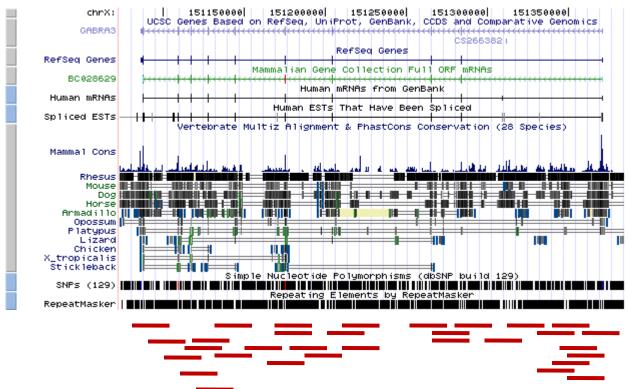
Sequencing: old and next

Illumina sequence data

Random DNA library of short fragments ~300 bp 3 billion DNA sequence reads

50, 100 bp long Single-end reads Paired-end reads

Run time: 1-9 days Data volume: 1-500 GB


Sequencing platforms

Platform	454	Illumina HiSeq	Illumina MiSeq	PacBio	Ion Torrent
System cost	-		++		+++
Prep	-	+	++	+	+
Running cost	-	+	++	++	++
Run time	10 hours	1-9 days	27 hours	2 hours	2 hours
Read accuracy	99%	98%	98%	87%	98.8%
Read number	100000	300000000	3500000	75000	6 x 10^6
Read length	400 bp	2x100	2x150	~2700 (10kb)	2-400 bp
Output	35 Mb	600 Gb	>1 Gb	90 Mb	>1 Gb

Dep of Medical Genetics

Oslo universitetssykehus

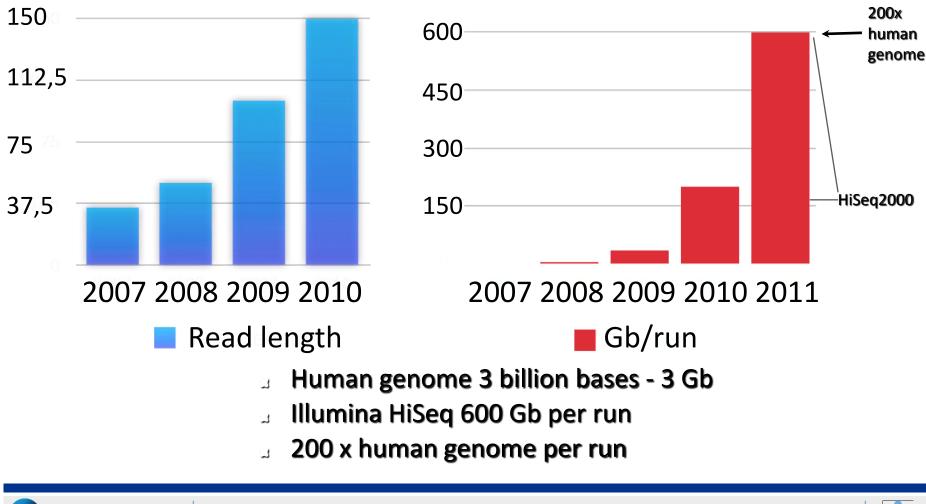
HT sequencing - commonalities

- Many short sequence fragments assembly
- "Stochastic" how many times a given sequence is sequenced
- The technology can be used for quantitative investigations
 - E.g. CNVs, gene expression

universitetssykehus

• Well suited for many non-genetic studies

High throughput sequencing - applications


Platform	454	lllumina HiSeq	Illumina MiSeq*	PacBio	Ion Torrent
Resequencing	•	+++	++	+	+++
de novo	+++	+	+	+++	+++
metagenomics	+++	++	+	++	+++
mRNA	++	+++	++	++	++
miRNA	-	+++	+++	-	
ChIP	-	+++	++	-	
DNA meth		+++	+	???	

Dep of Medical Genetics

Oslo

universitetssykehus

Illumina throughput

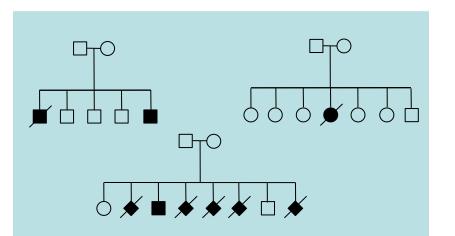
universitetssykehus

So what?

Parameter	ABI 3100	ABI 3730	Illumina HiSeq
Read length	~700	~700	100 (x2)
Reads per run	16	96	300000000
Run time	2 hours	30 minutes	9 days
Time for 1x human genome (3 Gb)	120 years	15 years	1 hour
Oslo universitetssykehus De	p of Medical Geneti	ics	

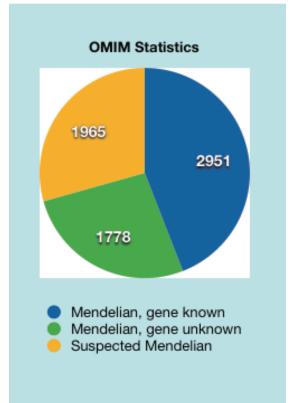
HTS and medical genetics

• Finding mutations which cause disease


Genetic disease: the challenge

Single gene (monogenic) disorders Approximately 50% of children with congenital syndromes/mental retardation do not receive a firm etiological diagnosis Many of these children have disorders that are primarily genetic in origin. Many disorders are individually rare and difficult to recognize even for experts. Clinical phenotypes can be non-specific and variable. Many phenotypes are genetically heterogeneous.

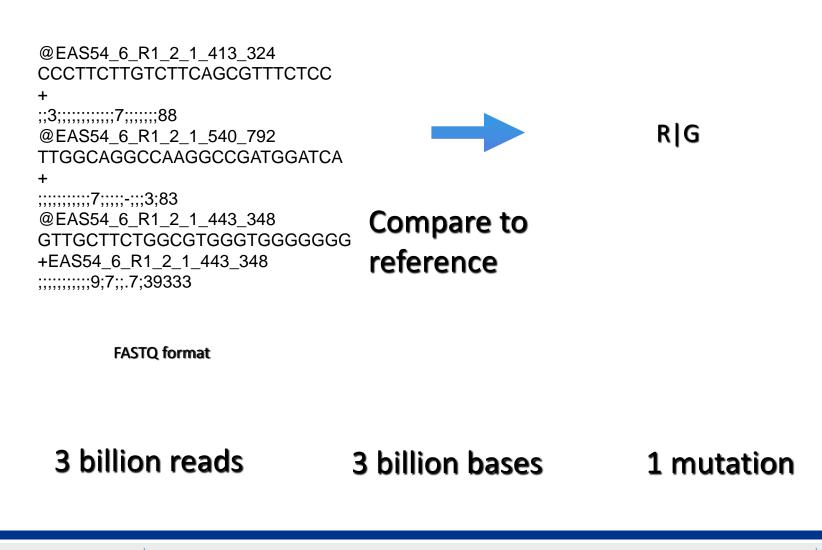
- Human genome is (quite) big
- a ~23 000 genes


sitetssvkehus

- a ~3 billion bases pairs
- How can we (rapidly) identify a mutation causing disease?

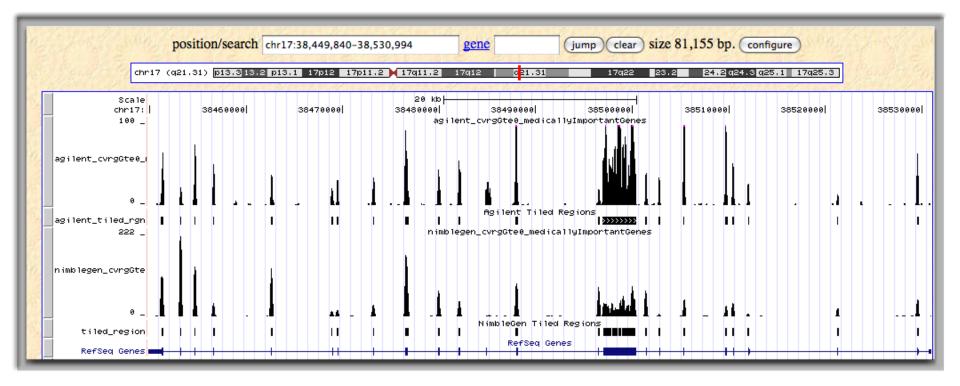
Mendelian disease in man

2951 of the well-characterized phenotypes registered in OMIM have a known molecular basis 3743 registered phenotypes with known or suspected Mendelian basis, no associated gene has been identified


Improve speed/cost of diagnosis of known genetic disorders

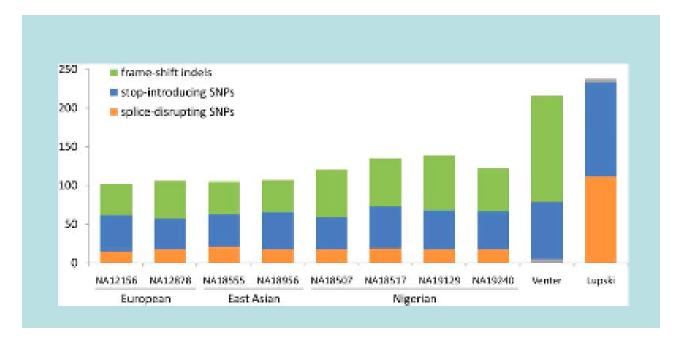
Improve speed/cost of identification of the cause new/suspected genetic disorders


Aim



Exome sequencing – still more common than whole genome

Exome sequencing data



What's in an exome?

> 20 000 variants

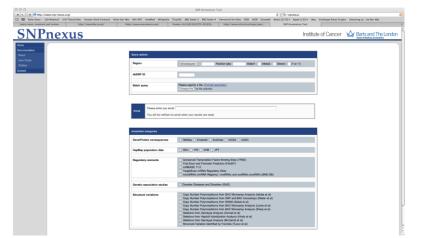
Many loss-of-function variants

MacArthur & Tyler-Smith Hum Mol Genet 19 (2010).

Dep of Medical Genetics

Oslo

universitetssykehus


MUSINGS

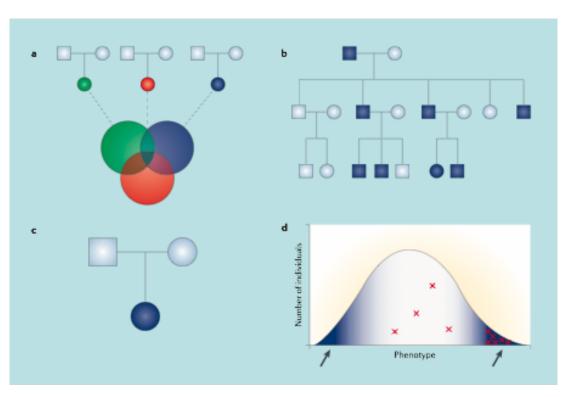
The \$1,000 genome, the \$100,000 analysis?

Elaine R Mardis*

Many, many variants will be found

Which variants are deleterious? Novel? (dbSNP, 1000genomes, HGMD) Synonymous/non-synonymous? Conserved? Alter protein structure?

SNPnexus PolyPhen2 MutationTaster ANNOVAR SeattleSeq Annotation


Strategies to identify mutations

multiple individuals same disease

large multigenerational pedigrees

de novo mutations

population frequency for complex diseases

Bamshad et al. Nature Reviews Genetics Nov 2011

Family data - Shendure table

more exomes

	Number of affected exomes			Subsets of 3 exomes		Subsets of all 4 exomes		
Dominant model		2	з	Any 1	Any 2	Any 1	Arty 2	Any 3
NS/SS/I	4,645-4,687	3,358-3,940	2,850-3,099	6,658	4,489	6,943	5,167	3,920
Not in dbSNP129	634-695	136-369	72-105	1,617	274	1,829	553	172
Not in HapMap 8	898-979	161-506	55-117	2,336	409	2,628	835	222
Not in either	453-528	40-228	10-26	1,317	109	1,516	333	44
Predicted damaging	204-284	10-83	3-6	682	37	787	126	11
Recessive model								
NS/SS/I	2,780-2,863	1,993-2,362	1,646-1,810	4,097	2,713	4,293	3,172	2,329
Not in dbSNP129	92-115	30-53	22-31	226	61	270	90	42
Not in HapMap 8	111-133	13-46	5-13	329	32	397	75	19
Not in either	31-45	2-9	2-3	100	6	121	14	4
Predicted damaging	6-16	0-2	0-1	35	2	44	4	1

Comparing two exomes identifies ~20 000 SNPs Which is the causal variant? In a family, compare more exomes

ersitetssykehus

Genetic diagnosis and rare diseases

2009

Confirm diagnosis

Test series of single genes

Often international labs

Very expensive

Time-consuming (years)

2012

Confirm or clarify diagnosis

1000s genes tested at once

Costs decreasing

Fast (weeks)

A diagnostic revolution

The future? Oxford Nanopore MinION

disposable device plug directly into computer USB port compatible with blood, serum and environm ~1 Gb sequence ~\$900

Personal genomics?

Summary

High-throughput sequencing

- Dramatic increase in sequence production
- Many applications on one platform
- Field new and moving very quickly
- Diagnostic (exome) sequencing in place
- Huge impact on human/medical genetics

Challenges/opportunities Data storage/backup/distribution Data analysis Whole-genome sequencing? Incidental findings

