

Challenges for the application of genome sequence in cancer research and medicine

Norwegian Cancer Genomics Consortium

Head Ola Myklebost

OUS – Norw. Radium Hospital

ola@genomics.no

All patients are different ...

- Normal genetic variation *and congential mutations* will affect
 - cancer risk and disease properties
 - ✓Immune response
 - Interactions between cancer cells and surrounding tissue
 - Pharmacokinetics and therapy response
 - ✓ Side effects
- Genome sequencing reveals huge "private" genetic variation
 - We do not know yet how to interpret this

All cancers are different

- Every type has different sybtypes originating from cell types with different properties
- Within each subtype there are different mutation spectra and thus different mechanisms that "drive" the cancer
- Also within each tumour there are subpopulations of cells with different mutations and properties

Ding, et al. & John F. DiPersio NATURE, VOL 481 p506, 2012

Mosaic amplification of target genes

(B) Intermingled subpopulations with mutually exclusive EGFR (red) or MET (green) amplification.

Snuderl et al. Cancer Cell 2011

New targeted therapies

- Require deeper biological understanding
 - ✓ Sensitive tumours may be treated
 - Resistant tumours may be given other options
- Costly treatment may be prioritized better
- Some patients with other tumour types may be eligible for already approved treaments

Genome-wide detection of tumour mutations

- Need normal control from each patient (blood)
- Both are sequenced, differences in tumour sample are mutations
 - Are mutations common across samples?
 - ✓ Is the mutated gene active?
 - ✓ Is it noise, a driver or an Achilles heel?
 - What fraction of the tumour is mutated?

Personalized medicine – the hype ...

N-of-One—On the Leading Edge of a Revolution in Cancer Care

Patients want the best possible medical care, especially when they are fighting cancer. But there are obstacles:

- Cancer treatment is one of the fastest moving fields in medicine. The explosion of research is overwhelming, and it is challenging to keep current.
- Doctors don't always agree on the best way to treat particular cancers.
- Medical information travels slowly. It can take a year or more for breakthroughs to become standard practice.
- Cancer treatments are extremely expensive and often have serious side effects, particularly when they target all dividing cells including healthy ones.
- For rare and advanced cancers, the best options are often found in clinical trials, but finding the right trial to enter can be difficult.

Watch Jennifer Carter featured on:

Is My cancer different?" providing an Expert Insight on the EVOLUTION OF CANCER TREATMENT

NCGC Phase 1

- Full exome, i.e. "all genes" (≈2% of genome)
- Approx 1000 sample <u>pairs</u>
- Cancer types:
 - ✓ Breast
 - Lymphoma
 - 🗸 Leukemia
 - 🗸 Colon

- Malignant melanoma
- ✓ Sarcoma
- ✓ Multiple myeloma
- Prostate

iversity Hospital

Haukeland University Hospital

Norwegian Cancer Genomics I Consortium Partners

- Anders Angelsen, Clinic of Surgery, Dept of Urology, St. Olav's Hospital, Trondheim
- Karol Axcrona, Centre for Cancer Biomedicine, University of Oslo, Dept. Urology, Norw Radium Hospital, Oslo University Hospital
- Bjørn Atle Bjørnbeth, Oslo University Hospital
- Øyvind Bruland, University of Oslo and Dept Cancer Treatment, Oslo University Hospital
- Øystein Bruserud, Section for Haematology, Institute of Medicine, University of Bergen
- Olav Dahl, Section of Oncology, Institute of Medicine,
 University of Bergen
- Håvard E. Danielsen, Centre for Cancer Biomedicine, University of Oslo and Institute of Medical Informatics, Norwegian Radium Hospital, Oslo University Hospital
- **Bjørn Tore Gjertsen**, Section for Haematology, Institute of Medicine, University of Bergen
- Jørn E. Jacobsen, Vestfold Hospital HE, Tønsberg, Norway, Centre for Cancer Biomedicine, University of Oslo
- Arild Nesbakken, Clinical associate at Centre for Cancer Biomedicine, University of Oslo and Consultant at Dept of Gastrointestinal Surgery, Oslo University

Hospital – Aker

- Helga B. Salvesen, Haukeland University Hospital, The University of Bergen
- Arne K. Sandvik, Dept Cancer Research and Molecular Medicine, Norw Univ of Science and Technology, Trondheim
- Rolf I. Skotheim, Centre for Cancer Biomedicine, University of Oslo and Dept Cancer Prevention, Inst Cancer Research, Norw Radium Hospital, Oslo University Hospital
 - **Erlend Smeland**, Centre for Cancer Biomedicine, University of Oslo and Dept Immunology, Inst Cancer Research, Norw Radium Hospital, Oslo University Hospital
 - Anders Sundan, Dept Cancer Research and Molecular Medicine, Norw Univ of Science and Technology, Trondheim
- Geir E. Tjønnfjord, Dept of haematology, Oslo University Hospital
- **Steinar Aamdal**, Dept Cancer Treatment, Oslo University Hospital

NCGC data logistics

Secure and Non-secure Data Sensitive data Somatic mutation data **Personal genomes** Low data security **High data security** CancerGenomics.no Sequencing Mutation detection **Hospital Secure Closed Network** Downstream functional analysis and therapeutic

Collaboration with

Center for Cancer Biomedicine HSØ Genomics facility HSØ Bioinformatics Core Facility University of Oslo IT (USIT)

interpretation

NCGC Objectives

- Establish a national network for the implementation of (genome-based) personalization of cancer medicine
- Provide and disseminate deep sequencing methodology for detection of cancer mutations
- Perform research to determine the usefulness of mutation screens to guide cancer treatment

NCGC Objectives

- Establish, provide and disseminate bioinformatic methods and tools to interpret the clinical impact of tumour mutations
- Establish a national tumour mutation database together with the Cancer Registry
- Initiate a dialogue with the health service on how cancer treatment should be personalized
- Investigate health economic scenarios for the introduction of these treatment strategies
- Lay a foundation for equal access to these kind of diagnostics across all regions.

Holistic approach to clinical cancer genomics in Norway

In the news

7 February 2012 | By Sources: Nature, G∈ Norway has taken towards creating a r genomic diagnostics

Home

About

Our work

The first clinical a next-generation seque

... the Norwegian approach is wise to take account of other equally vital considerations such as having **nationally agreed <u>protocols</u>** and <u>systems</u> to handle and process new testing and data, as well as efforts to underpin health professional and public <u>education</u>, and provide <u>health economic impact</u> data. ...

technologies have been widely

Ethical questions?

- In a research setting looking only at somatic mutations
 - ✓ Genomic privacy data protection
 - ✓ Right of access to personal research data?
 - Should the treating clinician be informed about possibly actionable mutations?
 - How certain do the data need to be?

Ethical questions?

In a research setting – looking at the germ line

✓ Genomic privacy – data protection

- ✓ Right of access to personal research data?
- How to handle possible high-risk variants or mutations (inherited or *de novo*)
- ✓ Reuse of data in other contexts
 - We have to be faithful to the consents

Ethical questions?

- In a clinical setting
 - Results need to be validated by clinically approved lab
 - Treating new patient groups with therapies approved for other cancers
 - Side effects probably the same, but do they work?
 - Personalization leads to break-down of the randomized trial concept

cancergenomics.no

A national health service collaboration to establish and evaluate genome-based diagnostics for cancer therapy decisions

Search: Enter Search ...

ST. OLAVS HOSPITAL

TRONDHEIM UNIVERSITY HOSPITAL

University Hospital

Submit

Haukeland University Hospital

NCGC Home

About NCGC Partners

NCGC Phase 2 Fact Sheet

Main Objectives

Collaborators

Coverage internationally

Coverage in Norwegian media

Innovation

National priority of health research

Kick-off at the OCC Cancer Crosslinks Meeting in January

Project presentation at Cancer Crosslinks Jan 2012

Presentation at the Dagens Medisin Arena

Related projects

Relevant meetings

Introduction

string(165) "Smarty error: [in content:content_en line 5]: syntax error: unrecognized tag: cms_selflink%20href='coverageinternationally'%20 (Smarty_Compiler.class.php, line 446)" string(117) "Smarty error: [in content:content_en line 5]: syntax error: unrecognized tag " (Smarty_Compiler.class.php, line 590)"

Oslo

We were today (29/3-2012) informed that our project will be funded by a substantial grant from the Norwegian Research Council, under the <u>Program</u> for publicly initiated clinical cancer studies!

After <u>the presentation</u> at <u>Cancer Crosslinks in January</u>, our national strategy for genomics-based cancer medicine gets <u>international attention</u>:

The July 2012 special issue on cancer technologies gives special attention to our project (see intl coverage)

nature International weekly journal of science

Search

Contact ola@genomics.no